
MapGarbage
UnrealTournament Editor Add-On Builder

variant February 2019
- english excluded from document -

Description:
This is an UnrealTournament Editor custom builder tool which operates in

Editor.

Purpose:
Some general map fixes and commands might be time consuming and then by

using a few mouse clicks we are modifying/fixing a map easier, yeah, it do
includes some common setup goofing removal for that victimized and brutalized
MonsterHunt game for no skilled play and no quality.

Operation:

By pressing right Mouse click on that Glass/TrashCan Icon from Editor
(setup explained later) you can open This Builder.

We have to mark True options which we want to launch and then clicking on
BUILD button shown. Once finished work or if some scroll visual problems from
Editor are showing up (Editor is a trash regarding to what you say), just
close Builder and re-Open it (right click – in default OS's mouse setup) in
case that you still need it.

Explanations for features:

Value Value dependent Explanations:

bDoRemoveTrash - It's similar with Command OBJ GARBAGE

bRemoveNavNetwork - This option will delete Paths-Net for getting a clean
map (requires Save Map, Exit Editor, Re-Open, Re-Load
map) for removing all old refences (like
InventorySpot2000) and for a future clean build.

bTryFixBadPaths - This option is based on pathing docs by Epic and
ignored by Epic :/ where any NavigationPoint should
have an optimal minimum 50 UU distance from other one
- this is mainly for PathNode class. It will blindly
remove such PathNode closer to other NavigationPoint.
This option will prevent crashing map in game by
removing navigation Network applying tweak and
building Navigation again.

bPreNavigAdHck - With this option used before starting to add
PathNodes (MANUALLY !!!), we can tweak their
properties until job is being done for making them
able to fit in small spots where Editor can still
link them but they don't fit there for placing – BIG
Junks in SMALL holes. Their look in game is normal by
default but... we have new routes set. Requires Bot
Pathing knowledge. Here we have other placement for
InventorySpot Marker toward inventories not like in
default build.

bBuildNavNetwork - Similar to command Paths Define used for Constructing
Paths Net using current PathNodes.

bRemoveBullshit - It was pretty much "fascinating" to see new "mappers"
using Commanders and player types added in map with
no single purpose and neither any LOGIC. This command
will find these useless actors and perform their
removal.

bRemoveMonsters - For some default match which might go messy with
creatures added in map, this option will remove all
Pawns. Addressing normal DM and CTF map fixes. You
don't have to look where the nasty creature is, you
can push button and builder will do the task for you.

bCullTextures - This operates similar to command Texture Cull, but
without writing it in Console after ending mapping
work.

bTweakMHMovers bTweakMoverGroup
Is adding a Group for some
Movers – requires restart/reload
and activating new Groups
created.
bDoPawnOpenMover
Makes Movers Accessible by any
Pawn except Mission Critical
ones with bTriggerOnceOnly set.
bBadTrgMoverFix
Some Mission related Movers are
set TriggerControl creating dumb
errors when are linked with
Dispatchers and other stuff, a
mess which we can fix, AND MAYBE
FINALLY LEARNING THESE AFTER 20
YEARS...
bNoGrabMoverCheat
Cannot be something more
annoying than looking at a Bot
or a Player opening a critical
door without to do the job in
cause first - by CHEATING, lol,
originally USELESS added by Epic
:eye poking:

Used in MH Maps and doing what default mutators are
doing with movers and even more... Ideas of messing
up maps are a lot so this is fine tuning not an
entire fix.
Movers set for some group will need browsing groups,
refreshing and activating them, else you won't see
Movers.

bTweakMHFactory bChkMHFactAttack
This Factory can work as a
Trigger (if you don't have a
clue about this feature), while
Factory can be touched nasty by
a monster - the rest of items
spawned are pushed in combat
against another maybe the same
monster type - lousy battling -
by using this, we make a factory
to get a start only by Player
types, preventing monsters to do
a mess.

Some mappers think that Monster is Bot or such brain-
sh!t so we have badly messed up settigs. We are about
to solve all 2 stock Factories screwed with a normal
setup... Enhancements might be welcomed...

bXCPostNavHck - Simple feature that can recover Inventories lost from
their InventorySpots after repeated using
XC_PathBuilder which seems to mess them up after a
second XC type paths build - This is part of
XC_Engine if you have heard of it...
Hint ! By using this feature even if everything is
normal you can restore cylinder collisions for items
which were screwed as another option. This feature is
used in rare cases and it needs advanced actor
editing stuff for figuring if bug has been
encountered else it's not needed.

bBoostAmmo3X - Discarding regenerators "rule", this map might have a
game play as it is, however, because stuff for MH
battling might be a lot, ammo from map might have a
3X load and 3 times faster default RespawnTime (if
you know what the heck is about, if not - read
mapping tutorials !!! And learn stuff after years of
doing TRASH)

bHideSpriteActors - Actors having Sprite type diplay (lights, triggers,
etc) are going to be set for not being shown -
purpose is to look at map closer to how do it looks
in game. We are taking in account default set ones
not customized ones.

bUnHideSpriteActors - Actors previously "hidden" are going to be shown
back.

bReplaceActor ReplaceType
Typing Actor's Class Name
exactly, and Editor will
complete it... Actor that needs
replaced.

WithType
Using a class from a package
previously loaded typing class
name, also Editor will complete
entire class definition for
Actor used as replacement for
above one.

Wheew ! Self explanatory... This is able to replace
something from map with another thing (that has to be
loaded first in Editor !!!). As a sample, we can
replace a nasty PupaeWarrior having errors with a
default one letting admins to do the usual server
tuning. A lot of actors are suitable for this task
including one from MyLevel with other from MyLevel.

bSPawnTweaks MaxHealthAllowed
Separate feature for removing
4,000,000 Health from whatever
Dinosaur from whatever "joke"
type mapping idea.
Must specify value or else it
will cap to 100,000 by default.

This is pointed to ScriptedPawn types - monsters. In
random moments of checking stuff, you'll find dumb
settings done at monster properties, might be hard to
check each monster one by one. These settings might
go very unhealthy for a game-server. You can adjust a
few of them (or more).

bNoRotateWeapon ChangedRespawn
As an add-on, we can define
RespawnTime for weapons, visible
when server/game is being set
with bWeaponStay False - I'm not
gonna explain 2 pages what is
about...

Pretty useful for mapper who wants Weapons to stay
without rotating. Some of those turds were screwing
up things making mutators to get messy and even the
game-play, because they have no clue about Editor and
UScript anyway.

bTrySolveLocation - Addressing common actors mapped which are intended to
stay in space using FIXED values for their X,Y,Z
Location in 3D space rather than floating numbers
which are involving additional bits for no purpose.
It's a sort of align to grid.

bRoundCylinder - Again a feature for fixed values rather than floating
ones for actors. Some decorations, Queen as sample
might use those X.999967 things for their collision
cylinder and are really pointless for processing
collisions. Collision is rounded to a nearby integer
value, there is nothing messed up here.

bReportActors - This feature will print in Editor.log file all actors
used in Level + how many they are. If you known bad
packages with screwed up Actors you can track log and
then searching for those added in Map and deleting
them once located.

bShowSpecs - This is a debugger for paths before to test route in
game. Usually a suspect PathNode might block entire
route for Pawn. If you have a suspect or you are
curious about whatever point how is connected with
nearest Nodes, this feature will report connections
from that node and to that node and navigation
conditions for pawn roamer – should swim, jump, etc.
Default reachFlags are explained in more friendly
format using words, but also with numbers returned,
and an explained legend is logged too for any
advanced examination. Common navigation flags are
shown.

bCheckItems - This feature is used for testing how are placed
Inventories in map, for a DM map if items are in

walls or such, InventorySpot is not added and that's
not a target for Bots. Then builder will try to
adjust their location and logging this action. If
builder did not solved problem, you can track evil
stuff by checking log.
First check is detecting in default technology, will
work in order to gain InventorySpot over Inventory,
if not, will try by shrinking tester pawn somehow
like DevPath does. If it's not successfull, it will
be reported accordingly.
Scout didn't fit – is a message for a bad inventory
which might be detected by this builder.
Majority of maps are working somehow using shrinking
and Editor can map paths here, but they can be RED
paths in such case. Builder is enough accurate at
this point predicting paths (recommending this usage
before building paths) as a debugger for preventing
more junks in map based on multiple builds.

bHidePlStarts HoleLength – value for hidding
into ground of those buggers in
order to not be mapped as valid
paths. I'm using 9000 or less
or, depending on map. And should
stay the same for next command
done after pathing map.

This feature might be used when map has a high load
in a spot – more NavigationPoint type actors which
might cause ugly pathing bugs. This is addressing
PlayerStart – for MH takes in account SpawnPoints
(aerial placement has no purpose) also QueenDest used
by Queen type monster and being part of navigation
array but they won't have paths as long as are
burried into ground at predefined distance – see
paramater. This has to be done BEFORE BUILDING PATHS.
Next feature will bring back buggers after – to do
after creating paths if this feature was used before.

bRestPlStarts HoleLength – the same value for
unhidding from ground of those
buggers. It should be the same
with previous command unless
those points are going bugged
remaining into void.

This does the reversal action of previous feature
described above. By using both of them in the same
time mainly no visible action will occur. These are
two different things. It uses the same value declared
for recovering from ground of hidden stuff. Restoring
points in original Location will be done AFTER
BUILDING PATHS. If PlayerStarts are forget into void,
map will be unplayable so here your logic has the
word. Out of logic = A Junk UNR file, not MAP.
So, when this feature is True, previous should be
False and viceversa.

Stages are as follows: Hide points buggers (above
command), create paths, Unhide points buggers
(current command). This builder has all needed
features toward removing paths and building paths, so
everything is doable from builder toggling values
True/False.

bStaticsReport - This feature will track actors from map if are badly
messed up by various "creative" ideas intended to be
cool but ruining net play as long as map will not be
the same as off-line, which means that a basic check
for borks is addressing actors bStatic and bNodelete
if are screwed up, so called edited aka mindlessly
ruined. Actor original bStatic screwed up as movable
won't be EVER seen in client, else a weapon set
bStatic for no rotation will do sucks with mutators
and such. Builder here will find borks reporting them
and then you can roll back evilized actors to
original stage and doing the right setup. MapGarbage
has a feature mentioned before for locking weapons
rotation in a friendly format and not noob style.

bScanCTFAltPaths - This is a check addressing CTF maps for AlternatePath
actors - usually map has a better A.I. play if it do
includes such things. Also it's a good thing if they
are balanced well. All info will be logged.

bSimAltPathPicking aTeam – this is specification
for which Team is tested
AlternatePath picking.

Here we have a CTF simulator in how a Bot might pick
an AlternatePath after Re-Spawn or not picking one.
It uses a similar code from CTF controller adapted
into builder. A single check is done by pressing
build button once, with this option set. Each time
when build button is pressed we are simulating a Bot
respawned picking such thing like it does in a CTF
match so if you want to check what is about
definitely build button has to be pressed many times.
I think this feature will except good minutes spent
testing a CTF map in run-time. In Editor, in a single
minute you might figure how are sorted AlternatePath
actors.
Another test would be when Bot is flag carrier but
that thing has to be implemented first. Probably
these tests are way pretty conclusive.

bRemoveNoReachPaths - This option removes from the navigation points the
items listed as visible and inaccessible paths by
creatures that cannot fly to reach them and who do
not have any navigation specifications not even if

they could fly, these points may have directives to
reach the current point, but the current point has no
reachSpecs for reaching them. I have successfully
removed these references and I have had no problem,
maybe I just got a smaller map talking about the size
on disk.

bCheckDuplicates bRemoveDuplicates – this is a
sub-option for check and will
cause attempting a removal of
duplicated actors.

Checking map for duplicated actors – for me those
maps are not healthy. This is a different option, you
will want to take in account GreenNote about this
option.

bPurgeDupes2 - Used for a direct cleaning in a fresh loaded map –
will cause duplicates to have a NONE tag. This is an
alternate cleaning solution.

GreenNote:
bCheckDuplicates is addressing to perform a check into whatever Level for

duplicated actors. After this check Editor has to be closed without saving
map. This happens because behind this check you might have some Tags changed
and you don't want any modification here – this was a strategy in hunting
duplicated actors because they are really Evil. If builder has logged
duplicated actors you might record some names of duplicated actors before
cleaning them, Eg: Brush740.

Cleaning task: Editor restarted, map opened, builder set to True for both
these bools bCheckDuplicates and bRemoveDuplicates and push build button. At
end of task (if Editor is alive) SaveAs map with another name (using suffix
_healed or such). Close Editor and restart it, load map cleaned and look for
those Actors recorded like Brush740. This way I used because Evil duplicated
might go in deletion stage after a supposed cleaning done in multiple steps.
When map is saved like that you might see those duplicates vanished at next
load, gonne for good. That's why cleaning must be done in this contest in a
single move and fresh loaded map for preventing unwanted deletions. Product
resulted should have other name saved immediately in order to keep original
map if builder has failed the cleaning task. As an EndNote I used this builder
to check a crusher map with said 68 Duplicated Actors – DM-!DSF!-Harbour-
Nights-v3-Rm.

In cleaned map you are supposed to open advanced properties for such an
old duplicated actor by writing in console something like in sample below

editactor name="Brush740"
if nothing happens, then said example Brush740 is gone, or if you can see it
in map definitely it might be bDeleteMe and it will be lost soon (by copy-
pasting it into a text editor you can see what I mean) – happens if you check
and clean and re-clean map multiple times in the same editing session. If you
don't want to screw up actors, clean a fresh loaded map and save it as a
temporary map. If temporary map reloaded in another fresh session is good,
then cleaning was successfull. Once again, make sure about a copy of evil map,
if you fail cleaning perhaps an alternate solution might help.

Setup for Editor:

U File goes to System folder, bmp icon file goes to editorres Folder from
System (inside UT game used for modding) or whatever internal UT path for U
files. After these file handling operations, proceed to edit
UnrealTournament.ini file (default install). We have to find Section involving
EditPackages, and adding after all those definitions a new one:

EditPackages=MapGarbage

like in this sample fragment:
EditPackages=TarquinBrushBuilders
EditPackages=RahnemBrushBuilders
EditPackages=DavesBrushBuilders
EditPackages=ExtendedBuilders
EditPackages=XC_Core
EditPackages=XC_Engine
EditPackages=XC_EditorAdds
EditPackages=MapGarbage

That's all, if your Editor is not badly screwed, you might see icon
involved for working with new builder - yes, this is a custom so called
BrushBuilder but it doesn't do any Brush Building.

Post Notes:

Note 1): Advanced mappers probably doesn't need such tool – or they do
because it's a debugger and helper.

Note 2): For uninstalling process, follow Installing steps in reverse.
Notes 3): Copyrights - All time I was "fascinated" about some Copyrights

for an utter GARBAGE called Map Editor aka whatever Map Editing app. For me
that is a toillete type application but it's needed in mapping - :/.
Given some said MapPurger done by Gizzy I was doing a similar thing for my
needs - and here it is, because I was reading about some ReplaceActor feature
mentioned in a description (FALSE Information) but which it never existed...
and coding solution is similar.

Note 4): Enhancements and adds - Edit this tool and use it as you like...
a button pressed it's faster than editing actors.

Note 5): Some Update might come as needed - it won't mismatch nothing.
This is a tool for help at editing Maps, not for Servers/Players so I'm not
gonna spread 100 builder types because are not needed multiple builders but a
single advanced one is always welcomed.

Note 6) This is not a mapping tutorial, neither a MH related one, but
it's a helper. If you have mapping experience not cube-drawing only, you might
understand the purpose of this tool and how might help. If you don't know what
Editor does, having your mind into a complete fog, forget this tool. It is
addressing to help mapping not for learning mapping.

Note 7) All builder specific features used in the same time are proving
your insanity. All iterations and functions might go in opposite direction as
first thing, and then iterations limit will crash your Editor. Each function
of builder should be taken in account what it does and what it doesn't do.

Credits: In order of appearance: Epic, Mappers from Epic (with their
funky pile of crap) I tested pathing add-ons in such Levels, Gizzy sampling
such builder and "How To", Higor adding some light to my brain, Barbie helping
me to translate numbers in words, team updating old Unreal to whatever v 227
showing me that fly reachFlag can be used in UT but UT Editor is too dumb for
this planet, various UT "mappers" making me to write such tools.

Misc: I was informed that for MH fixes or nasty bugs detections there are
way too many factors in account. Perhaps future version will have more options

if worth efforts. Why ? Intention from now days is to go over engine
boundaries and making more sh!t maps and then, for such works there are not
too many things doable – to not forget stripping brushes and leaving a pile of
crap called map, bugged and making fixing harder.

