
PathsChecker
UnrealTournament Editor Add-On Builder

update October 2022

Description:
This is an UnrealTournament Editor custom builder tool which operates in

Editor.
Audience: The plugin is addressed to those who do maps for all type of

players – pathed maps, it aims to prevent the lost time with X tests of the
map on the activity of artificial intelligence.

Purpose:
#1) Virtual players (Bots) aim to collect weapons, ammunition, armors of

all kinds, etc. Directly from the Unreal Editor application we can perform a
primary test to check the navigation to each actor that can be a destination
of the navigation process by checking routes availability from each
PlayerStart to each possible destination actor.

It is helping mapper to do logically connected Navigation Nodes in order
to gain a better activity of Virtual Players (Stock Bots). Final tests
concerning movement capabilities or quirks should be operated as usual –
spectating one and/or two Bots as described in original tutorials. Until last
stage we might be aware of potential problems right from Editor.

#2) Such tool should be embedded in Editor as a default option/feature
but Epic did not have free time for it, all it was a rush for releasing an
incomplete software.

Architecture and Information

The plugin contains boolean variables (Right Click on Builder's Icon)
that can take True or False values. The TRUE marked option followed by the

 button activates the execution of a function. Other variables can be
TRUE but are connected with the main feature (experiments at mapper's will),
they do not do anything alone, all are going to be explained later.

Installation:
U file goes in System folder or whatever UT Path for U files. BMP file is

Button aspect from Editor and this one will go in editorres folder from System
folder. File UnrealTournament.ini will need to be completed for activating
this builder as follows (see colored line):
[Editor.EditorEngine]
...
EditPackages=ExtendedBuilders
EditPackages=RahnemBrushBuilders
EditPackages=TarquinBrushBuilders
EditPackages=TarquinExtrudeBuilder
EditPackages=DavesBrushBuilders
EditPackages=PathsChecker
...

We open Builder's interface usually with the Right-Click on Builder's
Hinted Icon. If everything was installed correctly we should see this Window
in UT's Editor having fore mentioned package set in "EditPackages" array from
UnrealTournament.ini file:

Explained vars:

Variable Connected data Description

TheMap - AutoCompleted by builder. Recommend manual completion only
for failures.

bCheckItemsRoutes - bOmniSeeking – scan
entire network for gaps.

Main TASK and Purpose
Builder starts testing paths from each PlayerStart actor
or nearby spots heading to all Inventories, AmbushPoints,
FlagBases (for CTFGame), AlternatePaths, ControlPoints
(Domination), MonsterWaypoints (MonsterHunt checks),
MonsterEnd (you won't see to many maps that are normal, no
worries).
Sub-Option takes time and iterations in maps loaded. In
maps that are using One-Way paths logically executed you
can expect a high number of failures. If map is supposed
to be consistent and normal, failures are pointing issues.

Experimental Stuff

bCanWalk - Tester ignited in Editor should logically be capable to
walk or else... Recommended to be left alone...

bCanJump - Tester ignited will be capable to jump. Paths requiring
jumping will deny Pawn if it doesn't jump.

bCanSwim - Tester ignited perhaps should swim if something is placed
or has route though water – logic.

bCanFly - Tester ignited has flight capabilities but... Plain Bots
won't do this. Testing results might be False.

bCanOpenDoors - Tester can be rejected in certain cases, depending or
route calculus and paths definitions.

bCanDoSpecial - Tester ignited can see routes through Combos (LE-LC-LE).

bCanTeleport - Tester ignited can deal with this self-explanatory stuff.

bHunting - Tester will use a bit of brute force for navigation taking
in account the closest node to the goal – During run-time
Bots are not very tempted to use this way and then finding
a route normally is conclusive by having this FALSE.
Cave At: In run-time a goal placed in a small box-room
covered by a door won't grant navigation for A.I. Pawn –
only using this brute-force which usually is not really
used in stock games, so here you can earn a false positive
because Movers are not really colliding in Editor unless
you'll activate their polygons to be visible and later map
will need to be re-build (recompiled as others are
saying)...

Altering these extra-options will deliver different results or... No results. You can toy
with them if you know what you do.

Update September 2022 – After probing map, all debris navigation data created by routing
process will be completely deleted and not on the way of stock natives, here will be a full
CleanUp.

Update October 2022 – Added optional sub-option _bOmniSeeking. It will trigger builder to
perform tests from every single Navigation Point to the rest of Navigation Points. Yes, here
might be recommended parameter -norunaway in Editor's command-line.

Builder's results info – Logic Cave At-s:

In theory if builder says “Greetings !...” this means that Engine was
capable to calculate routes from all PlayerStart actors to each possible goal
known so far - Assault stuff is not implemented, that game-type has errors and
this is my response when things are left unfinished, but routes for items are
still checked.

If Engine was finding routing logic, map still needs to be verified by
Bot as a secondary important test during run-time. Several dudes are not
knowing to deal with JumpSpots and their logic placement. This may deliver
impossible paths locking Bot in spot. Engine has a logic route data but in
reality A.I. movement might go wrong. Either way “trap” type located item
might have a route in spot, but there might be no option for leaving that spot
in order to keep roaming. This is why more extra quick checks are doable by
more builders which community is having before wasting time to look at Bot in
a test game session. If builder fails to find a logic route, there are big
chances to not see Bot going to flawed item until during run-time there is
another available goal and Bots will gain flawed items in a combat situation
due to the desire for nearby stuff. Technically everything should be connected
with logic data if we want Bots active and game balanced – not in ”Deck16][“
style. Debugging a broken route can be easy or hard depending on what user
does. For stock UT if we have XC_EditorAdds installed in Editor, paths are
drawn like arrows – later UT patches are having this as a default feature –
HELPFUL if you ask me. User will have to look around for arrows linking routes
in direction of item point by point. If such an arrow is missing (high
mystical jumps, geometry issues) the failure is logic. A good route means that
road to target should have an arrow pointing movement at each Navigationpoint
which is involved in route oriented in direction which Bot will follow. The
other “arrow” direction is a reversal direction good in return for any other
goal. Two normal Navigation Nodes are having Two Paths (ReachSpecs), moving
forward and back or else we have One-Way paths which are having other normal
logic – jump down from house/box, but we cannot walk on walls to reach there,
we will use inventories if available and navigation nodes with special
directives, and these will need to have the same arrows node by node. If you
are using only stock Editor 436/440 and nothing else, your life goes harder
with debugging a route, and here you are on your own. Perhaps your experience
is helpful and you don't need builders for checks – and then... Greetings !

To not forget that we can have maps with One-Way paths. In such maps it's
logic to see flawed routes. Connections there are into a single direction and
there is no returning route. Here we are interested only about certain items,
goals, those from behind searching point won't be available.

Update September 2022
Not yet implemented reversal checks (for said traps locking Bot in spot)

but we can have a full “CleanUp” for network in order to get rid of debris
data resulted from routing calculus. Internal chains created that are not
shown in plain Editor are destroyed. These are not useful at all, during run-
time in network data is dynamically mapped when Pawn does a call to these
routing natives from Engine and this is happening during pathing process when
Editor is probing routes. As result, if you are checking a map using this
builder, you will earn a clean Navigation Network without useless debris data.

Update October 2022
Sub-option usable optionally _bOmniSeeking is a little monster. We can

have a clue how many Navigation nodes are not part of any route. Here is taken
in account all Navigation Nodes if can be Target from every other Navigation
Node. As result you can remove/adjust/move an offending node elsewhere or
completing some forced links around bugged spot. If it comes to do such checks

in maps with hundreds of Navigation Nodes, the process can take time if your
machine is slow. In certain stock maps, this check is doable under 1-2 seconds
on a dusty rig. Definitely parameter -norunaway from Editor's command line
must be added if it comes to do checks in maps that are having hundreds of
navigation nodes.

As a hint, I'm starting Editor from a batch file delegated to delete that
lousy junk called “Running.ini” with zero bytes length. Here I can use any
switch available for Editor. This is said batch file (extension is BAT):
@echo off
echo Start Unreal Editor 440 + XC with higher priority
start "Unreal Editor 440 + XC" /WAIT /ABOVENORMAL /MAX UnrealEd.exe -norunaway
del Running.ini
exit

You don't need a high priority if this will cause issues, for me there is
no issue, I did not have any at this point. When Editor is crashing, it will
do it in the same way as it does since 1999.

Builder will print in Editor.log file all results. At this point you
cannot see all data. For debugging you will need to close Editor. Walk through
System folder and just rename Editor.log based on map-name (sample: Agony.txt
for map DM-Agony) and TXT extension. Now you can open that TXT file and look
for string Route Not Found or Not Found. If some Node can be seen multiple
times as flawed you can check what's up with that – or a group of nodes
bunching on some island that is not connected with the rest of map only as
One-Way or not connected at all. A quick example is map DM-Malevolence. There
are reported flaws, it can be seen PathNode4 that is not found from anywhere –
it's happening because this node is useless – placed outside of map, into the
void.
...
PathNode4: Searching...
PathNode4: Route Not Found from LiftCenter1...
...
PathNode4: Searching...
PathNode4: Route Not Found from LiftExit2...
...
PathNode4: Searching...
PathNode4: Route Not Found from LiftExit3...
...
PathNode4: Searching...
PathNode4: Route Not Found from PathNode0...
...
...
Processing: Full Scan from PathNode4.
PathNode4: Check Failed !
...

In other hand DM-Agony doesn't include any flawed node that cannot be
visited from any location of map where are placed other navigation nodes. Yes,
map has lost paths out of network, but what map has available as navigation
data will help Bot Pawn to move where it wants to go.

Credits:

EPIC - for delivering the stage called UT and UE1 where all these are
happening and the lack of testing tools available in UT's Editor, in addition
ZERO codes for inspecting Paths/ReachSpecs right in editing stage of a Level
(known as map);

Buggie – for some light concerning a Tester Pawn and its needs in
Editor's Environment (which I should manage to figure but I have only a tiny
brain...).

