
XC_PathsWorker
UnrealTournament Editor Add-On Builder

powered by XC_Engine v24+
version September 2022

Description:
This is an UnrealTournament Editor custom builder tool which operates in

Editor.
Audience: Advanced mappers understanding navigation and certain settings

concerning a good state of a map. Mandatory requirement: XC_Engine v24 and
above (if future versions are not going to get into ruins). XC_Engine add-on
can be used successfully only in Editor if it does funky reactions in run-
time.

Purpose:
Handling and creating very good or desired navigation paths in UT's

Editor at a time creates headaches. This builder-plugin attempts to come up
using some newer features that are implemented in the XC_Engine extension
created for UT helping with pathing stuff.

Majority of issues are caused by over-crowding navigation nodes (any
type) in a small room/spot causing Editor to create a lot of ReachSpecs for a
single node and then, their number it's no longer matching internal Paths
array going over boundaries – 23 ReachSpecs cannot go into a list aiming 16
ReachSpecs, and leaving unused paths un-referenced, out of navigation network.
Builder is intended for reducing these debris junks ReachSpecs, and has
options for adjusting paths charge, it will leave some free space for other
needed paths which user might want to create – returning a simplified network
and a faster processing task inside Engine.

We have the opportunity to edit such a path (REACHSPEC). We have the
opportunity to create missing paths. We have the opportunity to see all the
data related to a path and make corrections that automatic script in the
Editor refuses to help us – Editor can not read our mind in the end, and it
doesn't allow user to control paths as it does with geometry.

Architecture and Information

The plugin contains boolean variables (Right Click on Builder's Icon)
that can take True or False values. The TRUE marked option followed by the

 button activates the execution of a function. Other variables can be
TRUE but are connected with other main features, they do not do anything alone
(bOneWay, bTryMonsterMode...) all are going to be explained later.

Installation:
U files are going in System folder or whatever UT Path for U files –

builder has a helper file (might be good for future needs). BMP file is Button
aspect from Editor and this one will go in editorres folder from System
folder. File UnrealTournament.ini will need to be completed for activating
this builder as follows (see colored lines):

[Editor.EditorEngine]
...
EditPackages=ExtendedBuilders
EditPackages=RahnemBrushBuilders
EditPackages=TarquinBrushBuilders
EditPackages=TarquinExtrudeBuilder
EditPackages=DavesBrushBuilders
EditPackages=EditorTools
EditPackages=XC_Core
EditPackages=XC_Engine

EditPackages=XC_EditorAdds
EditPackages=XC_PathsWorker
...

As you might notice (or maybe not) XC_Engine is mandatory for this
builder because it uses functions from this Engine Extension. Builder it's
crashing your amazing environment without XC_Engine. Builder is tested with
XC_Engine v24 (compiled here) and v25b/UT469b (sloower !). I understand that
players are not always loving XC_Engine for playing game but it can be used
only in Editor if in run-time does ugly stuff in game-play. It has several
features that are helpful for mapping.

We open Builder's interface usually with the Right-Click on Builder's
Hinted Icon. If everything was installed correctly we should see this Window
in UT's Editor having all XC_Engine related packages set in "EditPackages"
array from UnrealTournament.ini file (XC_Core, XC_Engine, XC_EditorAdds):

Explained vars:
Variable Connected data Description

TheMap - Auto-Completed by builder. Recommend manual completion
only for failures.

bScanObjects - Listing all sort of objects visible with XC_Engine
extension.

bReportPaths - It will log all Paths (ReachSpecs) hosted by map – even
unused ones having a complete report of them. See Extra
paragraph.

bTestReach - This option will check two selected Navigation Points for
movement capabilities – it's a "PointReachable" test
reported. Collision data for a navigable spot is
captured/stored in a temporary reachSpec if we have as
plan creating a path between these two tested PathNodes
and we need to have a clue what collision would be
suitable.

bAlterPaths - Here builder is brutalizing a bit the competition. The
original navigation paths that have a maximum size 70×70
are modified at 117×112, here Titans can also move using
the navigation network not only smaller creatures (Must
have place !). Also the normal ways through elevators are
adjusted for less intelligent creatures altering the
special path definition - there is nothing special at a
lift in UT, it's just another way – more data it's in
code. After using this option for a big war, perhaps your
lifts must be set BT_PawnBump or else creatures won't
handle them.

bConnectAtoB - bOneWay – connect one way A
to B
- A – node name set as Start;
- B – node name set as End;
- TempReachSpec is template
for a future ReachSpec/Path

This is what we call Creating a Path manually. We need
here Point A and Point B as START and END then other
required data for this path, ReachFlags and Collision
data. Distance is calculated automatically – if it's not
defined. If the related variable bOneWay is False, the
path created here will have the other return Path too. So
we do have a path from A to B, and from B to A. Either way
it will be one single Path from A to B (jumping down from
a house). This ReachSpec/Path is created based on

temporary template reachSpec variable called
TempReachSpec. Reachspec created is a mirror of this
temporary spec variable. Empty paths (no data here) are
not accepted – logically they are USELESS all the way.

bModifySpec - SpecIndex – ReachSpec
delegated to be changed.

This option will modify a Path/reachSpec according to
TempReachSpec data for Index of Path SpecIndex. If
SpecIndex value is -1 nothing is changed.
ThePower: If a Path it's an evil one causing a bad loop
around a stair or a ledge, this path can be moved
elsewhere in map where a Bot can move but Editor (or even
this builder...) has "forgot" to add a path which looks
definitely navigable. This will screw paths indexes
referenced inside nodes involved but... the recovery is
described later below.

bGetNodeA - One selected Node is copied and set as Variable A and
START for a future reachspec creating or editing aka A.

bGetNodeB - Another selected Node is copied and set as Variable B and
END for a future reachspec creating or editing aka B.

bRemoveSpec - SpecIndex - ReachSpec
delegated to be nulled – not
deleted.

This option doesn't do actually a removal of a ReachSpec
because XC_Engine doesn't do this – exactly. Said
SpecIndex as number of the ReachSpec from array will go
nullified and moved on top of ReachSpecs array. As result,
all remaining reachspecs are renumbered. Apparently it
looks like a break-down of entire network starting with
"eliminated" ReachSpec. It is true but things are restored
due to another option added for defragmenting and
rebuilding Internal Lists with ReachSpecs based on their
referenced Nodes. After altering a ReachSpec it's
recommended defragmenting and listing them again because
next ReachSpec candidate for removal it's no longer having
the same Index number as it was after remapping ReachSpecs
for matching their navigation nodes. "Removed" ReachSpec
as debris data will go at end of array and all remaining
ReachSpecs are recounted – their Index is changed with one
point back.

Example: Destroying ReachSpec 50 will have
ReachSpec 51 remapped as 50, 52 remapped as 51 and so on.
It's why defragmenting-remapping them needs to be used
after each of such "removal".

This task requires attention at details which
usually it's not what mappers are getting used to have and
understanding of these assets.

bCountReachSpecs - This is a complete Paths/ReachSpecs counter – including
junks left in map and which are not having their Index
referenced in Navigation Network.

bCreatePaths - bTryMonsterMode – generates
paths for all sort of
creatures not only for Bots
but Bot-Compatible as well;
- bAvoidStarts – PlayerStart
actors won't have mapped
paths but they go in
Navigation Chain;
- bKeepOldPaths – old
Navigation chain and
reachSpecs are not removed
and so neither old
InventorySpots;
- ScanRange – default UT has
1000 which can be exagerated
in more maps and then it can
be configurable;
- PLimit – max number allowed
in internal Paths Lists Array
(0-15) from a node. Builder
stops at 10 creating reserved
space for extra connections;
- BunchSize – The size of
Spot with multiple paths or
inventories considered
overcrowded and delegated to
be simplified;

Builder is creating here a navigation network using
current PathNodes and combos from map – except those
incomplete, hidden from Editor, warp-zones and bOneWayPath
marked nodes. One-Way path will be user's job because here
are expected unwanted routes which user doesn't need. It
uses connected variables for creating usable paths without
loading map with never used ReachSpecs out of navigation
references.
Paths in Monster Mode are enlarged but it will check Bot
compatibility as well or else such paths won't be created.

September 2021 update
- Avoiding Starts, keeping old paths and not linking
points bHiddenEd might unlock some creative options which
original DevPath won't do.

TempReachSpec - bPruned (0 or 1) – if path
has to be a shortcut
(invisible in original UT up
to v469b so far);
- CollisionHeight – maximum
collision height for creature
delegated to roam around;
- CollisionRadius – maximum
collision radius for creature
delegated to roam around;
- Distance – used if defined
or else is automated;

This is the mirror of a future reachSpec/Path which will
be manually created or modified. I'm not messing with
Pruned Paths unless I turn them into normal needed paths –
visible in Editor.

- End – point name Known as B
captured by user or written
manually;
- Start – point name known as
A captured by user or written
manually;
- reachFlags – it's moving
flags as an INT number
according to physics required
for taking this route. R_Walk
= 1, etc. and making the sum
of these for final value.

bFixSpecsLocations - bAndNullExtraSpecs
If used, ReachSpecs that are
not inside Navigation Network
are no longer added back in
their place, but are
nullified.
See July 2022 Update Notes.

This is important to do after editing several
Paths/ReachSpecs. When a Path going in evil formula from
PathNode0 to PathNode1 was moved between PathNode2 and
PathNode3, this Index is still in old places and then it
has to be remapped properly in newer nodes and deleted
from old nodes. This option is checking ALL reachSpecs and
it will put them in their place if are edited or screwed.

August 2021 update – in extremely loaded maps
(kinda desperate pathing or insanity), certain paths are
not completed in internal Paths[0-15] array and also in
upStreamPaths[0-15] array. I'm not going to study engine
internals but I think there are generated a lot of paths
for each reachable node available from a source node. When
these are going over 16 Paths due to the OVER charge for
no purpose – this sort of pathing makes life harder with
BlockedPath which won't block anything being pruned easily
- some of these ReachSpecs will remain in the wild. The
code also will “forget” other paths, perhaps the bug is
connected with previous issue. This builder doesn't do
such bugs. In this fixing stage builder is capturing these
lost ReachSpecs and will add them into Navigation Network
for being used. Extra ReachSpecs are not added because...
there is no more room for them in arrays. They will remain
as debris data unused. The task result it's reported.
Usually such maps might go in random flaws and then I'd
rather prefer to simplify navigation network as much as
possible but covering map properly – exactly this is what
Polge was explaining but mappers are not reading. Of
course, Polge forgot more explanations but... the story
it's not for current document.

bDefragReachSpecs - This operation will drop out all ReachSpecs from
Navigation Network and will add them back depending on
their Start End and if are pruned or not. If we have
manually removed a ReachSpec Index or we have lost paths,
this is an alternate option for remapping them as needed.
Extra junk ReachSpecs (no more places for them in arrays)
are discarded at once with those "deleted" ones (they
will have None and Zero data). All Lost ReachSpecs are
result behind Editor's task in overcrowded maps. Either
way, NO, Editor doesn't do debris data if map is pathed as
Polge was recommending.
Technically if map is covered correctly with multiple
routes through multiple tunnels instead of multiple routes
in the same tunnel these issues will cease to exist.
Perhaps future UT updates will have another way of
calculations without generating too many ReachSpecs for
the same PathNode.

bCheckNodesZoning - It does a check around Navigationpoint type actors because
they need to match exactly a zone where are Placed: In
Water or not In Water. This out of sync happens when nodes
are moved manually and properties are not updated for a
Node in Editor. A node previously in air and not doing
paths if it's pushed in water it will be like an air node
because IT IS NOT updated. If certain nodes are not having
paths, it is advisable to delete paths then do this check.
Nodes are fixed if possible. Native function SetLocation
will update properties for target zone where actor is
being moved. Technically this is not a real problem of map
for run-time environment where Engine while initializes
the game it does the zone settings for actors. In Editor
if zones are not matching, those paths will not be created
by this Builder and you will need more manual working. In
order to have paths for Nodes concerning water, they have
to be placed/centered UNDER WATER surface and not above
and keeping only those two leafs outside of water surface.
A bad placement might result in bad paths or impossible
paths and this is your fault.

Update September 2021
- Adjusted code for InventorySpot actors because on certain bridges they were added UNDER
bridge and not over Inventory due to ”Spawn” function from UT used for creating these markers
recommended by Scout mapper, which had some quirks – it looks that are required multiple
checks for UScript pathing... - still under tracking;
- Implemented a dual check for PointReachable, preventing Monster Routes very heavy or

impossible for Bot to be created;
- Connections to/from a Node having bPlayerOnly set to True will have Paths with reachFlag 64
aka R_PLAYERONLY.
- Implemented bKeepOldPaths which won't remove a previous navigation network and data before
adding new paths.
- bAvoidStarts – will discard creating paths to and from PlayerStart actors – but map needs
to have these.
 Nodes bHiddenEd are excepted from being pathed, useful if nodes are connected doing damage
in spot, letting user to manage what would be connected and where.
Small corrections in operating paths creating task.
 Creating a Path is based on a double check. Bot Size is telling the story and not a big one
which has more options when nodes are too high from the ground. If Bot is agree, builder will
check the rest of options.

bAutoConnectAtoB - requires two selected
Navigation Points supposed to
have a path if testing
movement returns a good
result.

Builder is helping here if for some calculus reason two
navigation points might have a good path which was not
added during paths definition process. Path parameters are
tested automatically and if probing Scout returns positive
results at movement tests in Editor path/paths is/are
created without anything else needed. Technically it will
attempt a Two-Way path if possible, if not path it's not
mapped or it's mapped One-Way. This is actually a quick
method for completing valid needs directly reachable not
through walls.

July 2022 – Added support for Teleporters and Combos which
is done automatically without probing spot.

bTestDTraceAB - requires two Navigation
Points selected.

The two selected Navigation Points are tested if are
candidates to a future connection with a direct sight line
between them – center to center. Nodes closer without this
trace response definitely won't have paths. If you need to
avoid a path by placing node behind a thin column, you may
want to ensure that node won't get linked and tracing
result must be negative. Option was added after figuring
that PointReachable might do messed up paths based on
flawed calculations from Engine around some grates, stairs
whatever. Preventing such a path requires this test for
said two ugly nodes in order to no longer have a direct
line each-other.

bShowNodeData - requires a selected
Navigation Node.

This option will report reachSpecs content from paths
lists which a navigation node is having referenced. Here
you have FULL data of reachspecs so you can figure if here
are large paths or narrow paths, then you can do some fine
tuning if it's needed.

Update October 2021
- Changed code toward Teleporters which are Source-Only;
- Added variables bGetNodeC bGetNodeD C D for being used in newer bAutoMoveCDtoAB;
- A few changes in creating paths.

bGetNodeC - A selected PathNode gets captured as variable C which will
be source of an old current path delegated to be moved
elsewhere between A B.

bGetNodeD - A selected PathNode gets captured as variable D which will
be destination of an old current path delegated to be
moved elsewhere between A B.

bAutoMoveCDtoAB - C D A B – required nodes
which will have path modified
from C to D going between A
B.

This option can actually modify a ReachSpec without to be
necessary hunting index and making more moves. How does it
work ?
ReachSpec having as Start node C and as End node D. Goes
edited with Start as Node A and End as Node B. In practice
if a Path is moved we need to examine the other reversal
ReachSpec too (from D to C) which will need to be
recaptured as in first case as Start-C to End-D, path goes
between A and B – also redefined for being way back.
When ReachSpec is moved it will be de-referenced from
source/destination nodes and relocated in newer places.
Distance of path is calculated automatically but the rest
of data will remain untouched. This ReachSpec if it needs
to be adjusted later we have index copied in builder just
in case that ReachSpec needs to be corrected (collision
and/or reachflags). This is helping if certain path need
to be re-oriented between other two points for preventing
some bumping in a wall or a heavy move which fails often,
or simply routing Pawn between items in other way.

Update November 2021
Added options for Warp-Zones, this requires definition of a WarpZoneMarker, a customized one
rewritten might cause pawns to get a better behavior while are roaming through these Nodes.

bGenerateWarps - MarkerUsed – this is
mandatory to be declared,
using bugger from stock or a

Around a WarpZoneInfo actor (or an external replacement)
it's added a navigation actor specific to Warp-Zones in
order to create future paths through these areas. Here is

custom one. recommended putting them properly on the navigable ground
as long as aerial placement or placement on a wall from
Warp-Zone doesn't have anything improved or having a valid
logic.

bConnectWarps - After launching option for creating paths and having
navigation chain connected using this builder, this option
will create paths through WarpZoneMarker type actors if
Warp-Zones are having connection strings declared
correctly. Plain reachFlag for these reachSpecs is 32 like
in stock strategy and similar to combos Le-Lc-Le and
Teleporters.
Required Steps:
#1 generating warps markers
#2 generating paths-net
#3 connecting warps post-pathing

Update December 2021
Added a calculation concerning timers used for building paths – that was my own will. It will
report the average of ReachSpecs per Second built.
A small update-code glitch, not a pathing code – I'm not a fan of ”known bugs”.
Added a separator variable where Pathing variables needs to be declared, in order to gain a
small improvement at visual ergonomics.

To Do ?
- auto-connecting a new added and selected PathNode and linking it into NavigationChain ?
- declaring paths charge and a Min/Max range for this new one for being under extra-control ?

Update January 2022
Pathing a Combo delegated for jumping will have a small check – boys are not understanding
that Combos are TWO-WAY paths causing sometimes an impossible return after jump. Builder
attempts to prevent a connection from a JumpSpot to a higher LiftExit because Pawn doesn't
jump to a LiftExit, this Actor is not for jumping and is not having any directive for A.I.
concerning a jump back or... an Impossible jump back.

Update May 2022
Report during fixing ReachSpecs is reduced. It will show only errors, ReachSpecs are already
listed using the other option described upper in the table.
Several codes have been re-written for reducing BotPack dependencies – at this moment builder
won't trigger Editor to load anything from BotPack.
Code solution for pathing map has been changed for decreasing iterations at C++ Level – using
”Do-Until” instead of ”While”, ”For”.
Pathing report after creating ReachSpecs will include how big is Navigation Chain – previous
report is covered and not really visible in Log Window.

Update July 2022
Expanded option bFixSpecsLocations with a sub-option bAndNullExtraSpecs.
Added option bReIndexSpecs.

bReIndexSpecs - This option will wrap ReachSpecs with reindexing them. If
map has Valid ReachSpecs and Null ones, all valid are
located first in array and those unused are going in last
positions – See July 2022 Update Notes.

Update August 2022

bRemovePaths - All it does this option is getting rid of paths from map
using Paths Undefine command but as first task it will
null out data from ReachSpecs before calling Engine to
remove them. Purpose was to no longer have these
ReachSpecs objects linked at Actors from map, Reachspecs
being linked to NavigationPoints from map with Start End.

bSeePrunedPaths - Editing PrunedPaths for being drawn. They are copied
elsewhere into an external actor for mirroring these
reachspecs – all of them not only those referenced in
Navigation Chain due to latest UT patches.

bNoSeePrunedPaths - Editing PrunedPaths back into original format, not drawn
in Editor with data copied from their mirror. Navigation
Chain won't have any touch concerning these tasks.

Update September 2022
Version for September has not only a bit of revision at codes but it has some news which I
needed – probably others will need these too...
Certain ”animated” Task has a performance deal, because I worked in slower and a bit faster
machines, if repainting screen goes like a doggy slow, screen update period is decreased for
preventing a lot of time wasted here. I'm talking about constructing paths process, we allow
more time to Engine for computing paths instead of updating ViewPort.

bDisablePruned - Feature added in prior update was pointing me a lot of
invisible misery happily operated by ”Goblin” types of
Paths Constructors. Since the builder demonstrates already
that Paths are normally usable without those things, we
can get rid of them by nulling their content. They will

remain in map (or not – if we want them flushed).
Note: ALL PRUNEDPATHS are nulled, even those that are Left
Out of network by buggers developed in newer UT patches.

bFindFreeSpec - After nulling some useless ReachSpecs with prior described
features, if we need some nodes connected we can recycle
several debris ReachSpecs instead of creating new ones.
But we need to know an Index (number of a free/null
ReachSpec) available for usage. The rest can be flushed
out with next option...

bCleanNullSpecs - Purpose here is to completely remove debris data – null
ReachSpecs if they are no longer needed. The process is
dodgy, volatile nodes like InventorySpot and
WarpZoneMarker types are gone, but they will be recovered
after Cleaning task. Here is/are supported new types of
these but... if they have new properties it will be needed
adjusting them again. I don't know how many mappers were
using custom types of these assets since this task is not
very easy to do. This builder allows existence of custom
types of InventorySpots and Warps – probably no map will
be like that. Logic –> Whoever can handle these,
definitely has skills for working clean.

See Flush Note for Technical details.

Extra: A reachSpec known in UT Space as a Navigation Path is a sort of
structure containing some data that is being processed during C++ navigation
codes and it is drawn as a line between two navigation points, except Pruned
Paths (shortcuts):
#1 Actor START – is usually Navigation Point where a path starts;
#2 Actor END – is usually Navigation Point where a path ends;
#3 UnSeen by original DescribeSpec function – CollisionRadius – Maximum Radius
of creature accepted to take this path, Bot = 17.000000;
#4 UnSeen by original - // - CollisionHeight – Maximum Height of creature
accepted to take this path, Bot = 39.000000;

#5 ReachFlags – one or more movement capabilities in order to pass through
this path (R_Walk, R_Jump, etc) – Pawn must be able to walk, jump, swim, etc.;
#6 Distance – How long is the path in UnrealUnits aka UU. The shortest routes
are automated by Engine while a road to a target is computed;
#7 bPruned – values here are 0 or 1 which means if this is a pruned path
(shortcut over other paths) or is a normal path. Such ShortCuts are not shown
in plain Editor and neither in XC_Engine v24 but they do exist.

Red Path in original Editor means a Narrow Path not a Heavy Path – that's
a dumb myth spread for years – a cheap and not payed stupid show;

Blue Path in original Editor means a large(/Enlarged) path where a
Mercenary or a Krall can track Patrols or whatever. However, a Blue Path
having a bit too "narrow" (small collision accepted) directive might be
discarded for a Skaarj Berserker because this Boy it's a Big One. This is the
moment when Builder does a complete report of paths and then you can figure if
your path is compatible or not with Big Boys – if space is permitting, this

Path can be Edited/Enlarged.

Cave-At-s:
In U227 known as a recent UE1 update for Unreal, we do have options for

deleting ReachSpecs/Paths – completely removal of these. XC_Engine is capable
to ”deactivate” paths but leaving them in Map – not really deleting them. As
result, I did not implemented ”deletion” of a Path because that's not exactly
a Wiped Path, it's debris data which I dislike – but, if there is no way to
get rid of bugger you can proceed doing it a null ReachSpec. Perhaps a wide
range of maps can be pathed different using combos wisely placed instead of
generating bugs.

Due to UScript and Editor Environment used, builder can fail in adding
certain Paths. Here it's time for a small manual work and check, this is
doable as long as the builder has this capability. In whatever big map you
might see missing paths in water or whatever case. You can do them later
anytime exactly as you want them.

WarpZones – because WarpZoneMarker has a critical bug in plain UT and
here a Human Player can crash game during navigation/testing, I did not added
anything here as a Scripted Pathing task. A piece of crap it's not my way of
doing. You can add manually paths using combos or another forced links as you
like. It also would be a problem in determining the Place for WarpZoneMarker
in relation with WarpZoneInfo actor, some maps are having these placed in
hilarious locations and we do need to find the valid stepable floor in UScript
without to deploy to many processing cycles – this is way no go for me. Such a
WarpZoneMarker can be added and connected manually using tools like MapGarbage
and this builder. Yeah, WarpZoneMarker is defaulted with bHiddenEd True for
making pathetic life more harder a la EPIC, but we can deal with it anyway
because we can change properties without saving any stock packages and having
them ready to use in current editing session.

Flush Note:
bCleanNullSpecs – option is coming like a sort of Trivia. XC_Engine the

main Reactor of this builder has nothing for deleting a ReachSpec – at least
not for now. However, builder can purge these ones using a method which might
not be suitable for every single map. Let's see the methods and operating
mode.

For each InventorySpot and WarpZoneMarker it's added a new
NavigationPoint. Routes to/from these old points are reconfigured in new
Navigation actor which also is informed if it was about an Inventory or a
Warp. In next stage Reachspecs are saved in temporary actors added – including
these modified ReachSpecs. After doing this "backup" and flushing navigation
nodes from any data (stock maps are full of trash here), Engine is triggered
to remove paths – exactly, Engine will flush them, not XC_Engine - LOL. After
removal of paths (all is logged), builder will reconstruct lost points
InventorySpots and WarpZoneMarkers linking them as in original but VISIBLE
this time. Now ReachSpecs are restored from "backup" – only valid ones were
saved and only valid ones are reconstructed. At end of task Navigation chain
is being rebuild using InventorySpots as first nodes in chain and PlayerStarts
as lasts – this is probably the order of navigation rules. Route is searched
from Target to Seeker and linking nodes in reverse, with a minimum number of
cycles – can be very helpful in certain maps.

Let's see a Flush sample. Taking stock DM-Deck16][map.
We will use options as follows:
#1 – using bDisablePruned – nulling all PrunedPaths;
#2 – using bFixSpecsLocations with sub-option bAndNullExtraSpecs –

nulling Reachspecs that are not in nodes lists;
#3 – optional bReIndexSpecs – will wrap null ReachSpecs to last position

in their array – here they will be updated in nodes with corresponding Index;
#4 – using bCleanNullSpecs – here is the flushing task.

This way map will no longer have 1997 ReachSpecs, only 919, those used
ones at once with their bugged nodes and the same no access at several items
but... more clean. First hit in flushing map will cause existence of
InventorySpot0 – these will get wrapped. In other cases we will have other
Index for these names but... a clean ground. Cleaning won't solve bad placed
Nodes, it will only drop out debris data.

Custom Pathing Hints
It's important to understand reachFlags for preventing Pawn from being

discarded or bugged with an impossible path.
We do have Movement Flags aka ReachFlags as follows:

1 – R_Walk -> Pawn requires walking capabilities (Tentacles, Devilfishies,
are not compatible);
2 – R_Fly -> Engine recognizes this flag in run-time but original Editor won't
do these unless you are using custom pathing (and XC_Engine) – yes, it's time
to fly, boys;
4 – R_Swim -> This is for water and it is advisable to be ONLY flag 4 in Water
as long as Tentacles can ONLY SWIM and nothing else than hanging. Believe me
or not, Tentacles are swimming;
8 – R_Jump -> Usually this is needed at ledges and various small knee
obstructions but it has to be combined with R_Walk resulting 8 and 1 = 9. If
we want to go in water or go out of water I recommend there flags: R_Swim
R_Jump R_Walk which means 1 and 4 and 8 = 13; The logic is: Pawn will swim to
ledge, it jumps out of water and walks at next node. Reversal – it walks at
ledge, jumps in water and it swims at next node;
16 – R_Door -> Another never mapped flag concerning doors and creatures
capable or not to handle a door, mindless creatures can be discarded here in a
logic way if we are adjusting such a path correctly;
32 - R_Special -> This is a common Flag used at Lifts for intelligent
creatures or another ”smart” paths which a Bot will follow (Teleporters,
WarpZones, Jumpy Combos in original Devs – look at operational STOCK maps);
64 – R_PlayerOnly -> Not often used but... we have it, perhaps the name is
self-explanatory. If not, don't use it.

If we have PathNode10 and PathNode100 delegated to be connected, we might
want to see which data can be suitable for path's collision. A test is
recommended. If the test fails you need to go in game for figuring if this
connection won't cause an impossible path. Either way add a creature temporary
for figuring how big is the spot and try to stick around 70 Height and 50
Radius or such. If place looks small but navigable, you can go for 40 height
and 20 radius – Bot will not deny this way if it has a purpose to walk through
this path. A wrong added Path means reloading map without saving the screwed
up work. After each good move it is advisable Saving MAP. You can use a
temporary copy of map for figuring everything and dealing with custom paths.

Funky paths through holes where Bot jumps and fails to reach at target
can be excepted from being created by using a small range then connecting
manually missing paths. You can enhance this way Pawn's movement exactly as
you like, except cases when geometry does damage. A ramp even if is very small
as height, if it does an un-climbable surface it's a trouble maker. This will
need to be covered with some blocker actor in order to simulate a stepable
stair.

Paths over boxes won't need Combos, they are doable using PathNodes
logically connected with reachFlag 9 – R_Walk and R_Jump.

Fields from builder (GUI) interface of this Window are not updated
dynamically automated in Editor until it's getting a refresh by clicking on a
field or crawling outside of Editor and coming back, then it will be painted.

For some reason if iterations count goes over engine boundaries, you can
temporary start Editor using switch -norunaway until job it's done.
Technically if Editor needs that option, map might be overloaded and this is
not a good thing for UE1 assets.

If Map's geometry does funky paths in MonsterMode you can stick for Bot
Paths only, these are more real to what Bot can do – Bot it's a small pawn
compared to a titan, queen, etc. and novice Bot is clumsy at long jumps. After
September 2021 probably builder won't mess that much here as long as Bot-Type
test has the last word if Path will be created or not.

You can prevent a lot of paths heading to a bunch of Inventories by
simply hiding them in Editor.

Whatever is not connected as expected, Builder supports moving a Path
with option bAutoMoveCDtoAB and fields completed properly and logically. This
is the stage when user has full control over movement and then Editor won't
dictate dumb paths based on a Scout which is bigger than a Bot and creating
lousy paths in ramps where boys are recommending to put nodes more crowded 300
500 UU. When you'll figure the geometrical problem of ramps, you'll understand
what plain Editor does and what do YOU need to do for preventing lousy moves
and not placing nodes more crowded because that's a WRONG solution in all the
way told by various stories tellers without any prize taken for their Fake
News over shared. A Map with Bot Support doesn't need ONLY BLUE paths, Red
Paths are narrow Paths in Human format which are perfectly compatible with Bot
too, don't get fooled by their mystical stories. If Bot does not move
something is incomplete, a ReachSpec (/or more) is (/are) missing and nothing
like a stupid color. Color stage needs to be in account in SP/Coop/MH maps
aiming Monsters, AlarmPoints, PatrolPoints correctly mapped. The builder is
reporting data concerning these Paths and you can have a clue sooner or later
what's wrong and where and you can fix the problem as you like, you will also
be capable to detonate mystical stories by making things normal with your own
hands.

Another advantage is using builder combined with MapGarbage builder. This
will allow user/mapper to create its own navigation network by producing
manually all paths from map. In simple maps paths can be done in 15-30
minutes. MapGarbage can deploy InventorySpots (any type – even custom ones)
over inventories which can be all selected by the same builder and using a
defined height over Inventory. All these can be chained into
”NavigationPointlist” and then, current builder can be used for auto-
connecting nodes at user desire. Combos are easy to be created exactly as user
needs them – True one-way directions. Because of calculations done by auto-
connector, those potential paths causing a clumsy Bot are not really created,
you can prevent paths having lousy angles with ledges, etc, etc. Paths over
Movers (bridges or secret floor-trap-doors) can be created with full manual
control – it's what Editor doesn't do without hackish methods which are not
really working in maps without brushes. If you have idea about navigation
generally, you can do a perfect work, either way if you are drunk or on drugs,
results will show what was in your brain.

Working stage
Builder during paths definition task takes a bit of time, it logs what it

does and it will attempt a count for iterations. Due to log flood, builder is
closing log Window and it will update viewport from time to time showing
working status. At final point it will report time taken, number of reachSpecs
added, iterations at UScript Level and opening log Window. Details might be
relevant for figuring what was done at nodes.

Builder WILL NOT create paths in maps without PlayerStart actors. Since
such a map is not really playable, pathing it doesn't make any sense.

Steps operated by builder in creating paths:
-> Removing previous Navigation Network and cleaning trash bytes from nodes –
except when user wants to keep older Paths-Net untouched;
-> Iterating through all Inventories for creating InventorySpots – excepting
those bHiddenEd = True – updated August 2021 and excepting already marked
ones;
-> Creating NavigationPointlist – if it doesn't exists;
-> Log Window will be closed if it's opened;
-> Finding Groups of Inventories for establishing a ”Master” which will have
external connections out of bunch – area dictated by BunchSize;
-> Creating Paths through bunches of Inventories attempting a minimal load;
-> Iterating through Navigation Points and calculating ”PointReachable” in
defined range using a Giant Scout for MonsterMode and a Smaller Scout for Bot
Mode, nodes will have paths until PLimit is reached and then Next Node is
taken for dual probing (Bot and Monster type). Whatever Node found somehow
closer to other and linked won't have multiple paths to that spot but only
one;
-> pathed nodes are marked – viewport is receiving updates from time to time
during pathing process;
-> When number of paths is filled at 10 builder will proceed at next node;
-> After ending task, markers are removed and all work it's reported;
-> Log Window it's gracefully opened.
Due to simplified operation mode, builder looks a few times faster in adding
paths compared to original C++ methods from Editor, and it does more simple
paths allowing user to connect nodes later and to polish navigation network as
desired. Builder is hunting reachable nodes until limits are reached without
going over boundaries. In a High ScanRange and a lot of charge with Navigation
nodes more nodes are excepted because PLimit has been reached and no future
connections are in account. In exchange, certain areas might be funky, it
depends on map type, how is geometry, etc.

Modifying a Path
This chapter requires understanding about those lines drawn. By adjusting

a Path which is a R_Walk into a R_Walk R_Jump (flag 9) we need data completed
in TempReachSpec fields. Future modified reachSpec it's a mirror of this dummy
reachspec. Made sure about having a START, an END, CollisionHeight,
CollisionRadius and ReachFlags, distance is calculated automatically if is not
added. Distance can be different if reachspec has been moved between other two
navigation points. After these modifications map needs to be examined for
specs locations. bDefragReachSpecs applied after all modifications will solve
problem. Here is needed index of evil reachSpec or else nothing is touched.
You can have it by listing ”bShowNodeData” option from this builder which is
enough for figuring what sort of paths are having source node and target node.
Index is the number from Paths lists – those from 0-15 fields.

Feel free to develop your own methods more or less advanced. These are MY
solutions which might not be the best ever due to UE1 limitations and
blabbering at UScript Level.

July 2022 Update Notes
In overcrowded maps with nodes, when stock UT is used for building paths,

a lot of ReachSpecs are only drawn in Editor but not placed inside Navigation
Network. As result, they are not used in calculation for routing process
causing a questioning navigation for A.I. The option for fixing them will
harvest these lost ReachSpecs and adding them into Navigation Network.
However, if they are too many they won't fit into specific lists from nodes.
Such maps would need a revision concerning habits for adding paths just for
the sake of pathing and not for a high-quality network. The sub option

bAndNullExtraSpecs won't add these junk ReachSpecs into Navigation Network but
making them null ReachSpecs and causing Editor to draw only Paths that are
used during routing process in run-time. This is the true image of navigation
and not what Editor shows as lines (arrows whatever). Technically this is not
the ideal case (null specs are still taking space in map) but is a option for
figuring assets during working stage. However, if results are not bad, we can
use the other option for re-indexing ReachSpecs in order to have those VALID
ones as first in ReachSpecs Array leaving those unused re-indexed as last
ones.
By example (virtual example with 8 Paths – 3 being null) if we have initially
after several editing stages something like here,

0 1 2 3 4 5 6 7

Valid Valid Null Valid Null Valid Null Valid

after applying the bReIndexSpecs option, it goes this way,

0 1 2 3 4 5 6 7

Valid Valid Valid Valid Valid Null Null Null

5 6 7 remaining for future usage if someone else wants extra adds.

I did this option for a bit of wrapping, assuming if something iterates
through ReachSpecs perhaps is better to find VALID data first and not a mix of
ReachSpecs attempting to speed up finding desired ReachSpec. This option can
also fix some error concerning a path ”removed” manually if user has a doubt
about a mistake done during working process. Option will clean network from
all paths, it will harvest VALID reachspecs with adding them into network and
placing their new index over there, the rest of null ones are re-indexed at
tail of array. In theory I would completely delete Null ReachSpecs but at this
time I don't have available any native extension for doing this task –
XC_Engine can only modify/create ReachSpecs known as paths lines.
User also might want to de-reference manually paths in certain cases for
creating desired One-Way routes. Those paths removed can be nullified and
later re-indexed at last positions for preventing run-time routing process to
deal with them. Either way you can recycle them where is needed.

Update:
Problem of deleting null ReachSpecs looks solved somehow in September

2022 after getting an idea... I was waiting a solution from someone else
but... I decided to stop waiting two centuries...

A solution in C++ would be more suitable and I have some idea how to mess
with them but... since only in 227 assets removal of a path is possible with
altering index, let it be like that. To be honest even re-indexing them
normally and defragmenting them would be possible under 0.1 seconds after
removing a path but... it's not my problem if people in this century are
working like in past century.

Credits timer:
EPIC - for delivering the stage called UT and UE1 where all these are

happening;
Higor – for XC_Engine and some codes used as base and which I adapted for

Editor;
Pikko and other mappers – for various test-maps where I could figure what

I needed during pathing crowded maps.
Buggie – pointing some shots about special paths which could overload

useless ReachSpecs (Combos, Teleporters).

